Мусорная ДНК - Страница 54


К оглавлению

54

Вообще говоря, мы начинаем чуть больше продвигаться в идентификации энхансеров по эпигенетическим модификациям, которые не зависят от соответствующих ДНК-последова-тельностей. Эти модификации могут использоваться как функциональные маркеры, показывающие, как клетки определенного типа используют данный фрагмент ДНК. Удалось показать также, что эти модификации порой меняются при онкологических заболеваниях, создавая различные картины генетической экспрессии, а те могут вносить свой вклад в клеточные трансформации, которые, в свою очередь, как раз и приводят к раковым процессам.

Но даже если нам все-таки удается найти эпигенетический «автограф», который указывает, что мы, возможно, имеем дело с энхансером, нам все равно мешает еще одна проблема. Мы не знаем, на какой ген, кодирующий белок, он влияет. Это можно попытаться выяснить лишь одним способом — разрушая энхансер при помощи генетических манипуляций и затем оценивая, на какие гены воздействует такая перемена. Дело в том, что энхансеры функционируют не так, как промоторы. Энхансеры работают независимо от своей ориентации. Иными словами, неважно, в какую сторону они «указывают». Есть и еще более резкое различие: энхансеры могут располагаться очень далеко от того кодирующего белок гена, на экспрессию которого они влияют.

Кроме того, энхансеров гораздо больше, чем мы могли бы ожидать. В ходе недавнего широкомасштабного исследования изучались картины гистонной модификации примерно в 150 человеческих клетках. При поиске рисунков модификаций, похожих на энхансерные, оказалось возможным выявить около 400 тысяч кандидатов на роль областей-энхансеров. Это гораздо больше, чем требовалось бы в случае существования взаимно однозначного соответствия между энхансерами и генами, кодирующими белки. И даже если мы предположим, что длинные некодирующие РНК тоже обладают энхансерами, это число все равно окажется слишком большим.

Не все энхансеры обнаружились в каждом типе клеток. Это вполне согласуется с моделью, в которой один и тот же фрагмент ДНК может обладать разными функциями в разных типах клеток, в зависимости от своих эпигенетических модификаций.

Сегодня нет четких моделей функицонирования энхансеров. Ученые предполагают, что во многих случаях они очень сильно зависят от генетического мусора иного типа — от длинных некодирующих РНК. Собственно, некоторые классы длинных некодирующих РНК могут экспрессироваться на самих энхансерах. Многие длинные некодирующие РНК участвуют в процессах подавления экспрессии генов. Но теперь немало ученых считают, что существует и обширный класс длинных некодирующих РНК, усиливающих экспрессию генов. Впервые такую гипотезу высказали применительно к длинным некодирующим РНК, которые регулируют соседствующие с ними гены. В ходе ряда экспериментов искусственное усиление экспрессии длинной некодирующей РНК приводило к усилению экспрессии ближайшего к ней гена, кодирующего белок. И наоборот, искусственное подавление экспрессии длинной некодирующей РНК приводило к снижению экспрессии гена, кодирующего белок.

Дальнейшие подтверждения этой гипотезы удалось получить, анализируя временной характер включения/выключения длинных некодирующих РНК и информационных РНК, которые ими регулируются (как считали ученые). Исследователи подвергали клетки воздействию стимула, который, как они уже знали, вызывает экспрессию определенного гена. Как выяснилось, усиливающая («энхансерная») длинная некодирующая РНК включалась раньше, чем информационная РНК близлежащего гена, кодирующего белок. Это отвечает модели, согласно которой длинная некодирующая РНК, расположенная в области-энхансере, включается в ответ на стимул, а затем, в свою очередь, помогает усилить экспрессию гена, кодирующего белок (или включить этот ген).

Длинная некодирующая РНК способствует такому усилению не сама по себе. Для успешного осуществления процесса необходимо присутствие большого комплекса белков. Такой комплекс называется медиатором. Длинная некодирующая РНК связывается с медиатором, направляя его деятельность на близлежащий ген. Один из белков медиатора способен пристраивать эпигенетические модификации к соседствующему с ним гену, кодирующему белок. Это помогает рекрутировать фермент, создающий копии информационной РНК. Затем эти копии используются как матрицы для производства белка.

Существует неизменная взаимосвязь между медиатором и длинной некодирующей РНК. Искусственно вызванные понижения уровня экспрессии длинной некодирующей РНК или какого-то белка, входящего в состав медиатора, всякий раз приводили к понижению уровня экспрессии ближайшего гена.

Важность физического взаимодействия между длинными некодирующими РНК и медиатором показали на примере одного из генетических заболеваний человека. Речь идет о синдроме Опица-Каведжиа. Дети, родившиеся с этим недугом, испытывают трудности при обучении, у них пониженный мышечный тонус и непропорционально большая голова. Они наследуют мутацию одного-единственного гена. Этот ген кодирует белок медиатора, взаимодействующего с молекулами длинной некодирующей РНК.

Чем больше ученые анализировали деятельность медиатора, тем интереснее им становились эти исследования. Одной из причин такого интереса явилось то, что медиатор отвечает за действия группы энхансеров, обладающих необычными способностями. Это так называемые суперэнхансеры. Они играют особенно важную роль в эмбриональных стволовых клетках (ЭС-клетках), плюрипотентных клетках человеческого организма, которые способны стать клетками практически любого типа.

54