Гистонные модификации могут выступать как механизм тонкой настройки генетической экспрессии благодаря тому, что таких модификаций множество. Если ДНК сравнить с черно-белым изображением (возможно, разбавленным некоторыми оттенками серого в зависимости от уровня метилирования), то гистонные модификации — это яркая цветная картинка. В гистонах есть множество аминокислот, способных подвергаться модификации. К этим многообразным аминокислотам могут пристраиваться по меньшей мере 60 различных химических групп. Это выводит нас на невероятный уровень сложности, поскольку для каждого гена (или для одного и того же гена в разных типах клеток) существуют тысячи возможных комбинаций гистонных модификаций. Клетка интерпретирует их по-разному, поскольку эти модификации будут привлекать различные комплексы белков, контролирующие генетическую экспрессию и картину ее распределения. Одни комбинации будут усиливать экспрессию генов, другие — ослаблять ее.
Но ученых годами терзала одна загадка. Ферменты, пристраивающие модификации к гистонам, не различают особенностей ДНК-последовательности. Они не связываются с ДНК и не умеют отличать одну ДНК-последовательность от другой. Однако выяснилось, что в присутствии определенного стимула (для разных ферментов он может быть разным) ферменты с высокой точностью модифицируют определенные гистоны. Они добавляют модифицирующие группы к гистонам, расположенным на нужных генах (или удаляют из них модифицирующие группы), игнорируя близлежащие гистоны, связанные с генами, которые их не интересуют.
Современные исследования вроде бы показывают, что одна из функций длинных некодирующих РНК — выступать в роли своего рода молекулярного клейкого вещества, привлекающего гистономодифицирующие ферменты в окрестности выбранных генов. Одно из указаний на это получено при изучении функций определенных длинных некодирующих РНК в эмбриональных клетках человека (мы говорили об этих клетках в главе 8). Ученые показали, что примерно треть исследованных длинных некодирующих РНК соединяется с белковыми комплексами, в состав которых входят и гистономодифицирующие ферменты. Чтобы выяснить, имеет ли какие-то функциональные последствия такое связывание длинных некодирующих РНК с белками, исследователи подавляли экспрессию гистономодифицирующего фермента, который входит в состав комплекса. Почти в половине случаев изучаемые воздействия на клетку и на экспрессию генов оказывались такими же, как если бы экспериментаторы подавляли самую длинную некодирующую РНК. Это позволило предположить, что длинная некодирующая РНК и ферменты, модифицирующие гистоны, действительно ведут в клетке совместную деятельность.
Многие исследователи взаимодействия между длинными некодирующими РНК и эпигенетическими системами обращают главное внимание на определенный эпигенетический фермент. Он производит особую гистонную модификацию, которую с высокой вероятностью связывают с отключением генов. Будем называть этот фермент главным репрессором. Оказалось, он взаимодействует со множеством различных длинных некодирующих РНК.
Длинная некодирующая РНК этого гена нацеливается на главный репрессор этого гена, а он затем создает на гистонах репрессивные модификации, тем самым заглушая экспрессию генов. Эти репрессивные модификации привлекают к себе другие белки, которые связываются с данным геном и подавляют его еще сильнее.
Такой контроль, осуществляемый главным эпигенетическим ферментом-репрессором, часто используется для управления генами, которые кодируют другие эпигенетические ферменты. Нередко такие гены оказывают противоположное воздействие на главный репрессор, то есть они склонны не отключать, а включать гены. Суммарный эффект таков: главный репрессор оказывает сильное влияние на общий характер генетической экспрессии. Он подавляет гены не только напрямую, но и при косвенном воздействии — препятствуя экспрессии эпигенетических ферментов, которые обычно отключают другие гены. Получается двойной эпигенетический удар.
Как правило, это совершенно нормальная составляющая процессов контроля генетической экспрессии в наших клетках. Система делает в точности то, что должна делать: обеспечивает синхронную работу всех сложных клеточных механизмов. Но если в этом комплексном взаимодействии между некодирующими РНК и эпигенетической аппаратурой что-то пойдет не так, могут возникнуть проблемы.
К сожалению, именно это, по-видимому, происходит при некоторых формах рака. При определенных разновидностях онкологических заболеваний главный репрессор претерпевает сверхэкспрессию (скажем, при различных видах рака простаты и рака груди). Такая сверхэкспрессия считается негативным прогностическим фактором для больных. При некоторых видах рака крови главный репрессор мутирует, что делает его аномально активным. Похоже, в каждом из таких случаев подавляется «не тот» ген. Отсюда дисбаланс: белки, побуждающие клетку размножаться, «обгоняют» те белки, которые обычно действуют как тормоз. Так клетку подталкивают к раковому состоянию. А препараты, ингибирующие активность главного репрессора, пока еще находятся на ранних стадиях клинических испытаний.
Главный репрессор действует как часть большого комплекса белков. Исследователи показали, что самые разные длинные некодирующие РНК так или иначе связаны с функционированием этого комплекса. Возможно, существует целый ряд способов достижения репрессивных модификаций — в зависимости от типа клетки и от ее поведения. В главе 8 мы познакомились с длинной некодирующей РНК, чья сверхэкспрессия способствует развитию рака простаты. Удалось показать, что она связывается с главным репрессором и направляет его на определенные гены, в том числе и на те, которые в нормальных условиях сдерживают размножение клеток. Эта находка подтверждает гипотезу, согласно которой существует тонкий баланс между длинными некодирующими РНК и эпигенетическими модификаторами, а нарушение такого равновесия может оказаться опасным для клетки или для организма в целом. Подкрепляют эту гипотезу и схожие данные о связывании длинной некодирующей РНК, участвующей в процессах возникновения деформаций скелета и развитии целого ряда форм рака (мы обсуждали эту РНК в той же главе). Данная РНК связывается с комплексом, содержащим главный репрессор, а одновременно — с другим эпигенетическим ферментом, способным вызывать дополнительную репрессивную модификацию.